Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 190: 110031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008417

RESUMO

PURPOSE: Multiple survey results have identified a demand for improved motion management for liver cancer IGRT. Until now, real-time IGRT for liver has been the domain of dedicated and expensive cancer radiotherapy systems. The purpose of this study was to clinically implement and characterise the performance of a novel real-time 6 degree-of-freedom (DoF) IGRT system, Kilovoltage Intrafraction Monitoring (KIM) for liver SABR patients. METHODS/MATERIALS: The KIM technology segmented gold fiducial markers in intra-fraction x-ray images as a surrogate for the liver tumour and converted the 2D segmented marker positions into a real-time 6DoF tumour position. Fifteen liver SABR patients were recruited and treated with KIM combined with external surrogate guidance at three radiotherapy centres in the TROG 17.03 LARK multi-institutional prospective clinical trial. Patients were either treated in breath-hold or in free breathing using the gating method. The KIM localisation accuracy and dosimetric accuracy achieved with KIM + external surrogate were measured and the results were compared to those with the estimated external surrogate alone. RESULTS: The KIM localisation accuracy was 0.2±0.9 mm (left-right), 0.3±0.6 mm (superior-inferior) and 1.2±0.8 mm (anterior-posterior) for translations and -0.1◦±0.8◦ (left-right), 0.6◦±1.2◦ (superior-inferior) and 0.1◦±0.9◦ (anterior-posterior) for rotations. The cumulative dose to the GTV with KIM + external surrogate was always within 5% of the plan. In 2 out of 15 patients, >5% dose error would have occurred to the GTV and an organ-at-risk with external surrogate alone. CONCLUSIONS: This work demonstrates that real-time 6DoF IGRT for liver can be implemented on standard radiotherapy systems to improve treatment accuracy and safety. The observations made during the treatments highlight the potential false assurance of using traditional external surrogates to assess tumour motion in patients and the need for ongoing improvement of IGRT technologies.


Assuntos
Neoplasias Hepáticas , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Estudos Prospectivos , Movimento , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia
2.
J Appl Clin Med Phys ; 23(10): e13735, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880651

RESUMO

With the utilization of magnetic resonance (MR) imaging in radiotherapy increasing, routine quality assurance (QA) of these systems is necessary. The assessment of geometric distortion in images used for radiotherapy treatment planning needs to be quantified and monitored over time. This work presents an adaptable methodology for performing routine QA for systematic MRI geometric distortion. A software tool and compatible protocol (designed to work with any CT and MR compatible phantom on any scanner) were developed to quantify geometric distortion via deformable image registration. The MR image is deformed to the CT, generating a deformation field, which is sampled, quantifying geometric distortion as a function of distance from scanner isocenter. Configurability of the QA tool was tested, and results compared to those provided from commercial solutions. Registration accuracy was investigated by repeating the deformable registration step on the initial deformed MR image to define regions with residual distortions. The geometric distortion of four clinical systems was quantified using the customisable QA method presented. Maximum measured distortions varied from 2.2 to 19.4 mm (image parameter and sampling volume dependent). The workflow was successfully customized for different phantom configurations and volunteer imaging studies. Comparison to a vendor supplied solution showed good agreement in regions where the two procedures were sampling the same imaging volume. On a large field of view phantom across various scanners, the QA tool accurately quantified geometric distortions within 17-22 cm from scanner isocenter. Beyond these regions, the geometric integrity of images in clinical applications should be considered with a higher degree of uncertainty due to increased gradient nonlinearity and B0 inhomogeneity. This tool has been successfully integrated into routine QA of the MRI scanner utilized for radiotherapy within our department. It enables any low susceptibility MR-CT compatible phantom to quantify the geometric distortion on any MRI scanner with a configurable, user friendly interface for ease of use and consistency in data collection and analysis.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia (Especialidade) , Humanos , Fluxo de Trabalho , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software , Processamento de Imagem Assistida por Computador/métodos
3.
Med Phys ; 49(3): 1924-1931, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35023145

RESUMO

BACKGROUND AND PURPOSE: In the current and rapidly evolving era of real-time MRI-guided radiotherapy, our radiation biology and dosimetry knowledge is being tested in a novel way. This paper presents the successful design and implementation of a portable device used to generate strong localized magnetic fields. These are ideally suited for small-scale experiments that mimic the magnetic field environment inside an MRI-linac system, or more broadly MRI-guided particle therapy as well. MATERIALS AND METHODS: A portable permanent magnet-based device employing an adjustable steel yoke and magnetic field focusing cones has been designed, constructed, and tested. The apparatus utilizes two banks of Nd 2 $_{2}$ Fe 14 $_{14}$ B permanent magnets totaling around 50 kg in mass to generate a strong magnetic field throughout a small volume between two pole tips. The yoke design allows adjustment of the pole tip gap and exchanging of the focusing cones. Further to this, beam portal holes are present in the yoke and focusing cones, allowing for radiation beams of up to 5 × $\times$ 5 cm 2 $^{2}$ to pass through the region of high magnetic field between the focusing cone tips. Finite element magnetic modeling was performed to design and characterize the performance of the device. Automated physical measurements of the magnetic field components at various locations were measured to confirm the performance. The adjustable pole gap and interchangeable cones allows rapid changing of the experimental set-up to allow different styles of measurements to be performed. RESULTS: A mostly uniform magnetic field of 1.2 T can be achieved over a volume of at least 3 × $\times$ 3 × $\times$ 3 cm 3 $^{3}$ . This can be reduced in strength to 0.3 T but increased in volume to 10 × $\times$ 10 × $\times$ 10 cm 3 $^{3}$ via removal of the cone tips and/or adjustment of the steel yoke. Although small, these volumes are sufficient to house radiation detectors, cell culture dishes, and various phantom arrangements targeted at examining small radiation field dosimetry inside magnetic field strengths that can be changed with ease. Most important is the ability to align the magnetic field both perpendicular to, or inline with, the radiation beam. To date, the system has been successfully used to conduct published research in the areas of radiation detector performance, lung phantom dosimetry, and how small clinical electron beams behave in these strong magnetic fields. CONCLUSIONS: A portable, relatively inexpensive, and simple to operate device has successfully been constructed and used for performing radiation oncology studies around the theme of MRI-guided radiotherapy. This can be in either inline and perpendicular magnetic fields of up to 1.2 T with x-ray and particle beams.


Assuntos
Campos Magnéticos , Imãs , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Radiobiologia , Radiometria
4.
Med Phys ; 47(4): 1920-1929, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31917865

RESUMO

PURPOSE: Dynamic dosimaging is a concept whereby a detector in motion is tracked with magnetic resonance imaging (MRI) to validate the amount and position of dose in a radiation therapy treatment on an MRI-linac. This work takes steps toward the realization of dynamic dosimaging with the novel high resolution silicon array detector: MagicPlate-512 (M512). The performance of the M512 was assessed in a 1.0 T inline MRI-linac, without simultaneous imaging and then during an imaging sequence, both during dosimetry. MR images were acquired to determine the effect of the detector and its components on image quality. METHODS: Beam profiles were measured using the M512 on the Australian MRI-Linac and a comparison made with Gafchromic EBT3 film to investigate any intrinsic magnetic field effects in the silicon. The M512 has 512 sensitive volumes, each 0.5 × 0.5 × 0.037 mm3 in dimension, organized in a two-dimensional array. Small field sizes up to 4.2 × 3.8 cm2 were investigated in both solid water and then solid lung phantoms. Beam profiles taken at 1.0 T were compared to 0 T conditions, and also to profiles taken during a gradient echo (GRE) imaging sequence. Differences in 80%-20% penumbral width and full width at half maximum (FWHM) were investigated. Localizer MR images were acquired of the detector adjacent to a water phantom. RESULTS: Good agreement was observed between the M512 and film, with average differences in penumbral width and FWHM of <1 mm in the absence of the imaging sequence. Concurrent imaging widened the penumbra by up to 1.2 mm due to RF noise affecting the detector; film profiles were unchanged. Magnetic resonance images were affected by noise, in particular, due to the large amount of aluminum present, as well as from the USB cable, which acted as an antenna. Unfortunately, due to these issues, suitable dynamic dose imaging was not achieved with the current M512/phantom configuration and the MRI-linac. However, progress was made toward achieving this goal for future work. CONCLUSIONS: The M512 silicon array detector successfully measured high-resolution beam profiles in agreement with Gafchromic film to within an average of <1 mm on the first MRI-linac in Australia. More effective noise reduction will be required for the achievement of dynamic dosimaging in the future.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Silício
5.
Med Phys ; 47(1): 181-189, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31621914

RESUMO

PURPOSE: To report on experimental results of a high spatial resolution silicon-based detector exposed to therapeutic quality proton beams in a 0.95 T transverse magnetic field. These experimental results are important for the development of accurate and novel dosimetry methods in future potential real-time MRI-guided proton therapy systems. METHODS: A permanent magnet device was utilized to generate a 0.95 T magnetic field over a 4 × 20 × 15 cm3 volume. Within this volume, a high-resolution silicon diode array detector was positioned inside a PMMA phantom of 4 × 15 × 12 cm3 . This detector contains two orthogonal strips containing 505 sensitive volumes spaced at 0.2 mm apart. Proton beams collimated to a circle of 10 mm diameter with nominal energies of 90 MeV, 110 MeV, and 125 MeV were incident on the detector from an edge-on orientation. This allows for a measurement of the Bragg peak at 0.2 mm spatial resolution in both the depth and lateral profile directions. The impact of the magnetic field on the proton beams, that is, a small deflection was also investigated. A Geant4 Monte Carlo simulation was performed of the experimental setup to aid in interpretation of the results. RESULTS: The nominal Bragg peak for each proton energy was successfully observed with a 0.2 mm spatial resolution in the 0.95 T transverse magnetic field in both a depth and lateral profiles. The proton beam deflection (at 0.95 T) was a consistent 2 ±0.5 mm at the center of the magnetic volume for each beam energy. However, a pristine Bragg peak was not observed for each energy. This was caused by the detector packaging having small air gaps between layers of the phantom material surrounding the diode array. These air gaps act to degrade the shape of the Bragg peak, and further to this, the nonwater equivalent silicon chip acts to separate the Bragg peak into multiple peaks depending on the proton path taken. Overall, a promising performance of the silicon detector array was observed, however, with a qualitative assessment rather than a robust quantitative dosimetric evaluation at this stage of development. CONCLUSIONS: For the first time, a high-resolution silicon-based radiation detector has been used to measure proton beam Bragg peak deflections in a phantom due to a strong magnetic field. Future efforts are required to optimize the detector packaging to strengthen the robustness of the dosimetric quantities obtained from the detector. Such high-resolution silicon diode arrays may be useful in future efforts in MRI-guided proton therapy research.


Assuntos
Campos Magnéticos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Silício , Razão Sinal-Ruído
6.
Med Phys ; 46(12): 5780-5789, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31633212

RESUMO

PURPOSE: The fringe field of the Australian MRI-linac causes contaminant electrons to be focused along the central axis resulting in a high surface dose. This work aims to characterize this effect using Gafchromic film and high-resolution detectors, MOSkinTM and microDiamond. The secondary aim is to investigate the influence of the inline magnetic field on the relative dose response of these detectors. METHODS: The Australian MRI-linac has the unique feature that the linac is mounted on rails allowing for measurements to be performed at different magnetic field strengths while maintaining a constant source-to-surface distance (SSD). Percentage depth doses (PDD) were collected at SSD 1.82 m in a solid water phantom positioned in a low magnetic field region and then at isocenter of the MRI where the magnetic field is 1 T. Measurements for a range of field sizes were taken with the MOSkinTM , microDiamond, and Gafchromic® EBT3 film. The detectors' relative responses at 1 T were compared to the near 0 T PDD beyond the region of electron contamination, that is, 20 mm depth. The near surface measurements inside the MRI bore were compared among the different detectors. RESULTS: Skin dose in the MRI, as measured with the MOSkinTM , was 104.5% for 2.1 × 1.9 cm2 , 185.6% for 6.1 × 5.8 cm2 , 369.1% for 11.8 × 11.5 cm2 , and 711.1% for 23.5 × 23 cm2 . The detector measurements beyond the electron contamination region showed agreement between the relative response at 1 T and near 0 T. Film was in agreement with both detectors in this region further demonstrating their relative response is unaffected by the magnetic field. CONCLUSIONS: Experimental characterization of the high electron contamination at the surface was performed for a range of field sizes. The relative response of MOSkinTM and microDiamond detectors, beyond the electron contamination region, were confirmed to be unaffected by the 1-T inline magnetic field.


Assuntos
Elétrons , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Propriedades de Superfície
7.
Med Phys ; 46(11): 5152-5158, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31419317

RESUMO

PURPOSE: Dose deposition measurements for parallel MRI-linacs have previously only shown comparisons between 0 T and a single available magnetic field. The Australian MRI-Linac consists of a magnet coupled with a dual energy linear accelerator and a 120 leaf Multi-Leaf Collimator with the radiation beam parallel to the magnetic field. Two different magnets, with field strengths of 1 and 1.5 T, were used during prototyping. This work aims to characterize the impact of the magnetic field at 1 and 1.5 T on dose deposition, possible by comparing dosimetry measured at both magnetic field strengths to measurements without the magnetic field. METHODS: Dose deposition measurements focused on a comparison of beam quality (TPR20/10 ), PDD, profiles at various depths, surface doses, and field size output factors. Measurements were acquired at 0, 1, and 1.5 T. Beam quality was measured using an ion chamber in solid water at isocenter with appropriate TPR20/10 buildup. PDDs and profiles were acquired via EBT3 film placed in solid water either parallel or perpendicular to the radiation beam. Films at surface were used to determine surface dose. Output factors were measured in solid water using an ion chamber at isocenter with 10 cm solid water buildup. RESULTS: Beam quality was within ±0.5% of the 0 T value for the 1 and 1.5 T magnetic field strengths. PDDs and profiles showed agreement for the three magnetic field strengths at depths beyond 20 mm. Deposited dose increased at shallower depths due to electron focusing. Output factors showed agreement within 1%. CONCLUSION: Dose deposition at depth for a parallel MRI-linac was not significantly impacted by either a 1 or 1.5 T magnetic field. PDDs and profiles at shallow depths and surface dose measurements showed significant differences between 0, 1, and 1.5 T due to electron focusing.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas
8.
Med Phys ; 46(9): 4224-4232, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31246282

RESUMO

PURPOSE: Magnetic field effects on dose distribution and detector functionality must be well understood. The detector utilized to investigate these magnetic field effects was the DUO silicon array detector; the performance of this high spatial resolution detector was assessed under these conditions. The results were compared to Gafchromic EBT3 film to highlight any intrinsic magnetic field effects in the silicon. The results were also compared to previously published MagicPlate-512 (M512) data. The DUO has an improved spatial resolution (200 µm) over the M512 (2 mm). METHODS: A permanent magnet named Magnetic Apparatus for RaDiation Oncology Studies (MARDOS) paired with a standard linear accelerator (linac) enables either transverse (1.2 T) or inline (0.95 T) orientations of the magnetic field with respect to the radiation beam. A 6 MV Varian 2100C Linac provided the radiation component for the measurements. The DUO detector has 505 sensitive volumes (each volume measuring 800 × 40 × 100 µm3 ) organized in two orthogonal, linear arrays. The DUO was embedded in a solid water phantom in the first set-up and then a solid lung phantom in the second set-up and placed between the magnet cones. Beam profiles were compared under the magnetic field conditions and 0 T. Small field sizes from 0.8 × 0.8 cm2 up to 2.3 × 2.3 cm2 were investigated. The size of the air gap above the sensitive volumes of the DUO was investigated in the transverse orientation to assess the anticipated magnetic field effects. Full width at half maximum (FWHM), 80-20% penumbral widths and maximum dose differences between detectors and between the presence/absence of a magnetic field were investigated. Symmetry was also assessed for investigation of profile skewness under the transverse field. RESULTS: The penumbral widths measured by the DUO detector demonstrated good agreement with film and the M512 to within an average of 0.5 mm (within uncertainty: ±1 mm). The static inline magnetic field had minimal effect on the profiles in solid water. As expected, the lower density of solid lung meant that this material was more susceptible to demonstrating magnetic field effects in the dose deposited. The greatest penumbral narrowing due to the inline field (0.7 mm) occurred in lung. Central axis dose increase was greatest in lung (maximum: 9%). The transverse field widened penumbra, most notably in the solid lung phantom, by a maximum of 2.3 mm. The largest asymmetry due to the transverse field (4.6%) was also in solid lung. When the air gap above the DUO was filled with bolus, the dose maximum measured by the DUO was within 1.4% of film. CONCLUSIONS: The DUO detector has been shown to be successful in accurately describing the dose changes for small field sizes to within a 200-µm resolution in an environment resembling that of an MRI-linac. The DUO measurements were in agreement with both film and the M512 measurements, and therefore the DUO was found to be an appropriate alternative to the M512, with improvement in terms of its higher spatial resolution. MARDOS provided a suitable environment for these preliminary tests before progressing to the MRI-linac.


Assuntos
Campos Magnéticos , Radiometria/instrumentação , Silício , Calibragem , Estudos de Viabilidade , Aceleradores de Partículas , Controle de Qualidade
10.
Med Phys ; 45(1): 479-487, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156098

RESUMO

PURPOSE: Longitudinal magnetic fields narrow beam penumbra and tighten lateral spread of secondary electrons in air cavities, including lung tissue. Gafchromic® EBT3 film was used to investigate differences between penumbra in solid water and solid lung, without a magnetic field (0 T) and with two field strengths (0.9 and 1.5 T). METHODS: The first prototype of the Australian MRI-linac consisted of a 1.5 T Siemens Sonata MRI and Varian industrial linatron (nominal 4 MV). The second prototype replaced the Sonata with a 1.0 T Agilent split-bore magnet. Measurements were completed at 0.9 T to maintain the same source-to-surface distance between set-ups. Gammex-rmi® solid water with 50 mm of CIRS solid lung inserted as a lung cavity was positioned inside each magnet. This was compared to the same set-up with solid water only, where film measurements were completed at solid water equivalent depths corresponding to entrance interface/mid/exit interface positions of solid lung from the first set-up. Multileaf collimator (MLC)-defined field sizes were set to 3 × 3 cm2 and 10 × 10 cm2 . The 80%-20% penumbral width was determined. RESULTS: Under 1.5 T conditions, penumbra narrowing occurred up to 4.4 ± 0.1 mm compared to 0 T. As expected, the effect was less for 0.9 T, which resulted in a maximum narrowing of 2.5 ± 0.1 mm. Exit profile penumbra were more affected than entrance penumbra by up to 2.6 ± 0.2 mm. The 1.5 T field brought the solid water and lung penumbral widths more into alignment by a maximum difference of 0.4 ± 0.1 mm. CONCLUSIONS: The trimming of penumbral widths due to magnetic fields in solid water and lung was demonstrated and compared to 0 T. The 0.9 and 1.5 T field trimmed the penumbra by up to 2.5 ± 0.1 mm and 4.4 ± 0.1 mm respectively.


Assuntos
Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Elétrons , Dosimetria Fotográfica , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Campos Magnéticos , Imagens de Fantasmas , Água
11.
Radiother Oncol ; 125(3): 433-438, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28985954

RESUMO

BACKGROUND AND PURPOSE: To present experimental evidence of lung dose enhancement effects caused by strong inline magnetic fields. MATERIALS AND METHODS: A permanent magnet device was utilised to generate 0.95T-1.2T magnetic fields that encompassed two small lung-equivalent phantoms of density 0.3g/cm3. Small 6MV and 10MV photon beams were incident parallel with the magnetic field direction and Gafchromic EBT3 film was placed inside the lung phantoms, perpendicular to the beam (experiment 1) and parallel to the beam (experiment 2). Monte Carlo simulations of experiment 1 were also performed. RESULTS: Experiment 1: The 1.2T inline magnetic field induced a 12% (6MV) and 14% (10MV) increase in the dose at the phantom centre. The Monte Carlo modelling matched well (±2%) to the experimentally observed results. Experiment 2: A 0.95T field peaked at the phantom centroid (but not at the phantom entry/exit regions) details a clear dose increase due to the magnetic field of up to 25%. CONCLUSIONS: This experimental work has demonstrated how strong inline magnetic fields act to enhance the dose to lower density mediums such as lung tissue. Clinically, such scenarios will arise in inline MRI-linac systems for treatment of small lung tumours.


Assuntos
Neoplasias Pulmonares/radioterapia , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...